Category Archives: Creativity

Solutions in search of problem

Ultra-low-tech lightning detection: business aspects


Part 2 of write-up on ultra-low-cost lightning detection network. See Part 1 for background.

[By Jakke Mäkelä and Niko Porjo]

This part summarizes the cost and business case estimates made for the project. The analysis suggests that an extremely low cost might be possible, making the solution suitable for use even in developing countries like Sri Lanka. However, we could not find a way to motivate anyone to fund the R&D part. Thus, we are not pursuing this further for the time being.


Business case: both hardware cost and data transmission costs are kept so low that building and maintaining network is realistic to perform as a public service. Data transfer can be made over mobile phone network (SMS, GPRS, 3G…) or landline if available. Multiple operators are made to compete to keep data costs down. Hazard indication to end users will need to be wireless to achieve real-time warning.


•An exact business case is difficult to determine, as it is for any lightning warning system.

•Situation in Sri Lanka: Tens of deaths reported annually, real number of deaths and injuries unknown. Commercial detection systems too expensive to maintain.


•Absolute worst-case scenario: If SMS sent less than once per min, reliability of network becomes poor. Thus cannot transfer much less than this. During storms, whole network would need to be transmitting 60*60=3600 SMS/hour. In Finland,  cost of SMS on one operator is ~5 cent, so cost would be 180 EUR/hr for whole network. Assuming 6 hours/ day of storms in active seasons, would mean 30 kEUR/month, which is of course completely unacceptable. But in practice, there are fixed-cost deals available from operators. Multiple operators are absolutely needed in order to maximize price competition and minimize risk of monopoly pricing. But there are SMS-based systems in existence which are affordable (for example Nokia Life Tools which means that costs could be kept reasonable if there is political push.

•Transfer rate over GPRS, if available, is even in extreme case ~160 B/min or 1kB/hour per station.  For total network, transfer is ~60 kB/hour. Per month, amounts to ~100 MB. On one Finnish operator, GPRS cost can be ~1.5 EUR/MB, so cost would be <200 EUR/month. Clearly GPRS would be the preferable channel where available.


•Sensors need to be stockpiled to allow them to be replaced quickly if needed, so at least 100 need to be built. Smaller calibration networks can also be developed in parallel and run in a suitable country.

•Main components are radio receiver, GPS clock, GSM/GPRS, processing unit. Battery may be most expensive individual component. ideally will run on AC power, but need to have backup battery/UPS capable of multi-hour operation in case of power failure.  Unit cost of 400EUR should definitely be reachable (cost of full network 40kEUR), though profit margin to manufacturer is then low. This part may need to be subsidized.

•Setting up of network is low-cost since all sensors are autonomous and operate by wireless network. Slow deployment is possible.

•Central unit can be a tabletop PC. Redundancy and power supply needs will increase cost significantly, but main algorithm is simple.

•Operating costs can be minimal if GPRS can be used.

•Cost of transmitting hazard information to users via Cell Broadcast is largest open question.

Funding and implementation

•No funding has been found.

•The organization Geoscientists Without Borders has been funding projects which are similar to the proposal:

•The target of the pilot is to improve local R&D competence in Sri Lanka, but kicking off the project could require an investment that is difficult to find locally. National foreign aid organizations (Finland or Sweden) might be approached for projects of this type, especially if some of the testing can be done in Europe (enhancing local knowledge also).

Similar projects

•Lots of small semi-official warning systems are known to exist, but limited info in public domain. Data transfer is almost always by fixed-line Internet, which can be unreliable especially in developing countries. Mobile wireless networks have better reliability (though not perfect).


We continue to think that the idea would work in principle, but there is no real way to make it successful commercially. We need to feed our families, and cannot do it.

If someone is interested in making this a non-profit open-source project, the crucial documentation is already in the public domain and just needs to be collated together. There are some major engineering issues to be solved, but if profitability is not a requirement, they are likely to be solvable.



Concept for ultra-low-tech lightning detection


As a team, we have a historical trend of failing at everything we try. Common sense dictates that we should try to hide that fact. However, we’ve adopted the opposite strategy. Publishing our failures shows others how they should not proceed, and might give them ideas about how they should proceed (see The SMOS project). What’s in it for us? Not much. But it’s not a big effort to spend a few hours documenting things for the benefit of others.

[By Jakke Mäkelä and Niko Porjo]

This particular concept was a low-tech lightning detection system. Our former employer let us put some effort into looking at a system that could have used a cell phone’s radio circuits for remote lightning detection. The idea was more or less ridiculed, and it never did become commercial in the original form.

However, we found that the idea is less stupid than it sounds. I eventually did my PhD thesis on the physics of such systems. In brief: the crackle that lightning produces in any radio channel can be used to identify and range lightning, giving some pre-warning time before the thunder can be heard.

This is fairly pointless in Scandinavia, but could be significant in tropical areas with more frequent and violent thunderstorms. Both the hardware and software can be extremely simple — basically, an AM radio costing a few dollars can be used. This is thus a technique that might be feasible in developing countries.

We considered Sri Lanka to be a possible place to test the system. It has high mortality from lightning, and a poor economy and infrastructure. Thus, more expensive lightning detection systems do not sound highly realistic there. We also had connections with Sri Lanka during the project and my PhD studies.

Some other researchers and I wrote a peer-reviewed paper on how such a device could be used to detect lightning (Gulyas et al, JoLR 2012). We also wrote a non-peer-reviewed conference paper on how multiple sensors could be used to create a detection network. It’s one of those things that theoretically works. Making it work commercially is a completely different question.

Having been let go from our previous employers, we looked seriously into making this a commercial project. But we came to the conclusion that we would just starve.

The text below is mostly in the form we left it after deciding to stop. It is in draft form, as we do not feel like wasting our time on prettifying it after making a no-go decision. Technically oriented people will understand what we are saying. For readability, we have split the document into two parts; the technical document here, and a commercial document to be published later.

The various entities mentioned here (University of Uppsala, University of Colombo, and Finnish Meteorological Institute) were approached unofficially, but have not formally commented on the idea.


A loose consortium between for example the University of Colombo, University of Uppsala, Finnish Meteorological Institute, and the proposers could contain all the competence that is needed to implement the project. As of 2012, a new lightning detection chip AS3935 is available from Austriamicrosystems which could form the detector part in the first generation. Thus, the hardware design would be particularly simple now (


  • The University of Colombo has experience of the local conditions. Since the target is to transfer all the knowledge to Sri Lanka, Colombo should be the overall lead for the project, with other parties consulting per need.
  • The University of Uppsala has in-depth knowledge of lightning physics and a close working collaboration with Colombo.
  • The Finnish Meteorological Institute has a unit which is experienced with setting up weather-observation systems in developing countries.
  • Mäkelä and Porjo have experience with low-end detector design as well as the network technology.


•Create an ultra-low-cost lightning detection and warning system for developing countries.

•Pilot project could be run e.g. in Sri Lanka.Technology tests need to be done in a country with accurate lightning location reference data (USA or Europe)

•Technology exists (and multiple technologies possible), missing is a low-cost system to bring the data together and disseminate it to end users. Specifically, low-cost real-time systems are missing.

•Focus is on extreme simplicity, capability to withstand power cuts, quick response times.

•Modular and technology-agnostic (no technology lock-in). Only requirement is that each station be able to provide a distance estimate when a flash is detected.

•Open-source project, with possibility to incorporate better techniques as technology improves.

•Simplest detectors can be built based on public-domain information. Local Sri Lankan R&D can be used to design and build the sensors.

•In the somewhat harsh conditions, it is realistic to assume that some of the measuring sensors will be malfunctioning or offline at any given time. Network algorithm must be made flexible to account for this.

Proposal for demonstrator

•Build network that covers the western coastal region of Sri Lanka.

•Build detection network on principles described in Porjo & Mäkelä 2010. As of 2012, the AS3935 chip from Austriamicrosystems (about 4 USD) is available as a front-end. This information is in the public domain. Simple detectors are also well-known and in the public domain. Some original design work may be needed, but could be done at University of Colombo (academic work). Lowest-cost approach could include a stock Android phone with a Rasberry pi attached to a GPS clock source and a small custom board for the AS3935.

•Sensors by default transmit flash information via mobile phone link (SMS or GPRS). Landlines (Internet access) can be used if available, but they can be expected to be more vulnerable to errors than wireless especially when storms are nearby.

•Flash-by-flash locations are not attempted, only storm risk zones (Gulyas et al 2012). Intra-cloud flashes are difficult to range in any case, and from the viewpoint of security, the most important parameter are the boundaries of the active storm cells.

•Central computer identifies storm risk areas. Sri Lankan Met Institute? Must plan system with high redundancy from the very beginning (at least two computers running separately) because probability of failure is highest exactly when the storms are strongest. The duplicate(s) can also be used to beta test networks whenever stations change.

•Mobile base stations within the risk areas send warning SMS to participating cell phones. GSM standard  allows this since a cell broadcast recommendation exists. But this is potentially difficult issue as requires operator cooperation, as well existence of the GSM network which may be unreliable. Negotiation with operators is needed, and in particular operator lock-in must be avoided (in which an operator can define his own price at will). Note that in principle it is NOT necessary to alert 100% of the people in the area, as it can be expected that people will alert each other. However, 100% should be a target.

•Since ranging accuracy drops radically after 20 km, stations cannot be separated by much more than this. For redundancy reasons, stations every 10 km might be better. In case of Sri Lanka, region of main interest is the coastal strip, thus the network could consist of approx three rows of sensors separated by ~20 km, sensors every 10 km or so.  To protect 200 km strip of coast, need minimum 3×20=60 sensors.

Data transfer needs

•Data transfer needs to be divided among multiple operators to avoid collapse if one operator’s SMS center crashes. Ideally each sensor would have at least two SIM’s (dual-SIM technology already exists) in case one crashes.

•Data transfer from sensors is to be by SMS or GPRS. Since locations of stations is known, only need per flash time (to 1-sec GPS accuracy) and intensity (8 bits would be sufficient if calibration is OK). Since we want to allow possibility of direction-finding at least in the future,  8 bits allows 1.4% angular resolution. Time can highly compressed if for example nearest hour is assumed to be known, in which case 12 bits is enough to code nearest second. Some kind of reliability value of a few bits would also be useful. → Each flash could be coded in 32 bits.

•SMS spec has 1120 bits per message (160 7-bit characters as in SMS, equivalent to 140 8-bit characters as in Twitter).  Thus up to 35 flashes could be coded in a single SMS. Since flash rates are essentially never 30 flashes/minute (in extreme cases ground flashes up to 4-6 flashes/min, cloud flashes theoretically 10 times higher). Sending SMS once per minute would be sufficient even in case of an extreme storm.

Part 2 on business aspects: click here 



Double bucket


Couple of years ago me and Jakke where conducting some lightning measurements. We were in a hurry and on a budget. Well, perhaps not so much on a budget as I was (and am) fond of cheap solutions. What we came up with, was a way of using some 50 mm by 50 mm sawn softwood (likely spruce or pine), some plywood and a couple of polypropylene buckets to make a fairly durable weather cover. These could be used for example as part of an open monitoring project.

Since I’m lazy, I didn’t bother to dismantle them after the measurements ended and a couple of these have been out in the weather (Southern Finland)  for about four years. Today I finally decided to take them a part. I found out that they have been holding up pretty well and would likely have been up to their task for at least a few more years. So if you are looking for a way of making a similar system, below I explain how to make them. At the end are a couple of pics and comments on the dismantled set.

White buckets were used in an attempt to keep the electronics cool. Other colors may be used depending on location to make it less visible.

Figure 1 shows a rendering of the two ways we used to setup the systems. In the left the stud is driven to the ground. I used an iron bar to first make pilot hole and then carefully using a small piece of plywood as protection (between the sledge hammer and the pillar) hammered the stud to the ground.

In the right is the system we used on a (Melbourne) Florida roof top for a couple of months to create a more temporary measurement setup. We used some concrete blocks as additional weight just in case. If you are considering a more permanent system consider adding some steel wire to attach the system to something really heavy. You don’t want it hitting someone when it is picked up by hurricane winds or a tornado.

Cheap weather cover for measurement devices
Figure 1. Cheap weather cover for measurement devices

Figure 2 shows what you need. All sizes are approximately those we used, select your bucket size to match the size of your device and scale everything else accordingly.

  1. Two short pieces of wood. One should be short enough to fit side ways in to the bucket and one should be about 5 cm shorter than the bucket is high. One long piece of wood, it will determine how high the rest of the system sits.
  2. A piece of plywood, cut a circle that fits in to the bucket to a depth of about 5 cm
  3. Two buckets
  4. Some screws and hot glue
  5. a saw, (sledge)hammer, screwdriver, eye protection etc.
Figure 2. Things you need
Figure 2. Things you need

As shown in Figure 3 set the longer of the two short pieces of wood on top of the plywood. Use hot glue or two screws or both to attach it in a manner that it can’t rotate around the vertical axis. Before this, make any openings you need for electrical wiring and such.

Figure 3. Set one of the short pieces on top of the plywood.
Figure 3. Set one of the short pieces on top of the plywood.

The shorter piece of wood is then attached on the other side of the plywood. Select the correct length for the support pillar and after driving it to the ground attach the plywood to it. If any of the wood surfaces is curved using copious amounts of hot glue between surfaces before inserting the screws will make the system more solid. The inner bucket is attached with one screw, which is driven through the bucket bottom to the piece of wood shown in Figure 3. Note that you will be driving the screw in the direction of the grain, do it carefully or the strength of the attachment will be reduced.

Figure 4. Attach the shorter piece of wood as shown and put the bucket on top of the assembly
Figure 4. Attach the shorter piece of wood as shown and put the bucket on top of the assembly.

Add the other bucket, this one stays in place by gravity and friction. If you use a screw, rain will seep in.

Figure 5. Add the other bucket.
Figure 5. Add the other bucket.
Image 1. Two systems, the outer bucket has been removed from the one on the left.
Image 1. Two systems, the outer bucket has been removed from the one on the left.
Image 2. View from below.
Image 2. View from below. Looking good, all the wood is still healthy.


Image 3. View inside the protected area. Apart from some spider web its like new.
Image 3. View inside the protected area. Apart from some spider web its like new.


Image 4. The support structure. The limiting factor for the operating life of this setup is likely rotting at the air ground interface. I was able to snap the wood by tapping the sharp end to the ground
Image 4. The support structure. Limiting factor for the operating life of this setup is likely rotting at the air ground interface. I was able to snap the wood by tapping the sharp end to the ground.

Figure 4 shows the support structure and the weak point at the air-ground interface. Rotting has reduced the strength of the wood. If the place where measurement are taken is not very sensitive, consider using wood that has been treated to protect against rot. Using a larger size like 75×75 or even 100×100 mm2 will likely also give you a couple more years of service life.

Image 6.
Image 5. Ultra violet radiation has made the plastic brittle. Some erosion was also visible on the surface. Note the white stuff at the end of the screw. This screw was used to hold the inner bucket in place and the Zinc protection was showing signs of wearing out.
Image 6. Markings at the bottom of the bucket.
Image 6. Markings at the bottom of the bucket.


Epilogue: Troglodyte is not dead even though it is buried

This is a comment related to Jakke’s post about ramping Troglodyte down as a project.

When I face a mirror, I see the person to blame. My personal input was never on the required level.

I have a lot of started ongoing studies, but it is really tedious work. I believe one shouldn’t report much before knowing the results. It is also a reason why one needs to be fully committed. In spirit I am, but seemingly not in flesh. Not enough.

I have an excuse. That excuse led me to a project with a monthly salary. Hopefully we can build something great there.

Money and salary is the dilemma we have faced several times with Jakke and Niko during the last two years. There is so much work to be done, helpless to help and projects to start. And still we are in a situation where we all have to decide what is important and what is not.

We do it everyday, each of us.

An old car salesman told me 29 years ago that money is such an old innovation that everyone must have it by now. Or by then, since it is almost 30 years later now. There must be even more money to go around.

But in the areas of Humanitarian IPR or Humanitarian Work we don’t see it. Perhaps we need more old car salesmen there.

We and many others are not asking for much or for something impossible. But even that is too much. Big part of it is due to institutional problems (not challenges) buried in the way how they behave. We have touched those in our previous posts.

The system(s) need to see the money coming back and multiplying on its way. Human life is not money, even if it multiplies over time. The systems do not encourage to focus on something that would be important and could be done. They focus on what can be done and what makes money.

Yes, I am whining and am selfish.

I am not desperate enough or driven enough to forget everything else and drive just this one thing. I am in too good a position that food and shelter are not my problems. I too am thinking how to accumulate wealth to get me over the next dry season.

My dry season is related to work with salary, not a physical draught with famine.

I am ashamed, it is only the image in the mirror and the ones near me that I value high enough.

It is not impossible to try and continue to change the status quo. To use effort and money to build something good and humanly valuable. Something that is not valuable only in monetary terms and measured in monetary terms.

Such work takes time.

We, together with APO and humanitarian IPR, are on a path to something we do not know where it leads us. It does not have a name.

We just know we can do more.
And we will.

I am sure we are not alone.

We will continue to change the thinking one sentence and a comment at a time. It just takes longer.

Once in a while we have regular jobs, but the face in the mirror reminds us that we have possibilities to do something good with the tools we have been given and have gathered.

For us it is evolution over revolution, affecting the system with its democratic rules. Respecting our societies and everyone around us.

I don’t think the world is ready yet, we have potential for so much more.
All of us.


Suurmenestyksissä on aina takana valtavasti työtä, mutta myös suunnattomasti tuuria. Miksei joskus annettaisi onnen ratkaista kokonaan?

Ehdotan Veikkaukselle ja Raha-automaattiyhdistykselle innovaatioarvontaa.

 [Summary: Great success is often about great luck. Could we occasionally let luck decide everything? I propose that the government use part of its lottery profits to run an innovation lottery.]

Kauaskantoisilla suunnitelmilla on kivinen tie kuljettavanaan. Onnistumisten yhteydessä hehkutus on suurta, mutta harva muistaa vielä useampia epäonnistumisia. Vähän aiemminhan tuo loistava onnistuminenkin oli vain todennäköinen huti muiden joukossa.

Asioilla joiden eteen tehdään kovasti töitä, on usein taipumus toteutua. Vaikka aina ei voi voittaa, aina voi yrittää. Historian suuria onnistumisia isolla panostuksella ovat NASAn kuuohjelma 1960-luvulla ja miksei myös onnistunut epäonnistuminen Kristoffer Kolumbuksen kompastuessa Amerikkaan yrittäessään löytää reittiä Intiaan. Pienemmästä “markkinointibudjetista” johtuen viikingit eivät löytäneet Amerikkaa, saati sitä jo asuttaneet ihmiset.

Usein käy niin, että kun toivo suoraviivaisesta ratkaisusta on menetetty, kynnys vaihtoehtoisille ajatuksille alenee. Näistä voittajista puhuu koko maailma, muistamatta kuinka lähellä tuhoa nekin kävivät. Joskus peräänantamattomuus tuo voiton, mutta vielä useammin itsepäisyys ajaa tuhoon. Kaikille ei käy yhtä hyvin kuin vihaisille siipiveikoille, jotka kiusaavat sikoja. Harva oli valmis ostamaan Applen osakkeita 1990-luvun puolivälissä, nyt joku voi (aiheetta) kehua heitä visionääreiksi.

Google on kasvanut yhdeksi maailman merkittävimmistä yhtiöistä ja sen tekemisiä suitsutetaan ja välillä jo mollataankin. Isoksi kasvaminen tuo aina omia haasteitaan kateudenkin lisäksi. Harva tietää tai muistaa, että ideaa ja nuorta yritystä yritettiin myydä aikaisessa vaiheessa, mutta se ei tuolloin kelvannut. Hakukoneitahan oli jo olemassa. Laajasti käytössä olevan Skypen tapauksessa teknologia ja käyttäjät löysivät toisensa, mutta itse toiminta oli tappiollista. Viime vuonna Microsoft osti Skypen velkoineen ja synnytti miljonäärejä ja kenties miljardöörejä. En kerro tätä siksi, että inventio (keksintö) on innovaatio vasta lyödessään läpi ja että kaupalliset tekijät usein määrittävät lopullisen onnistumisen. Silti kaikesta halutaan syntyvän innovaatioita, mutta kaikki eivät voi olla parhaiten menestyneitä. Suurissa onnistumisissa on intohimon lisäksi usein sattumaa mukana. Nöyrä onnistuja myöntää onnen ja ajoituksen merkityksen.

Isoja tehtäessä vaaditaan isoja panostuksia. Silloin yrittäjän kyky valaa uskoa ympäristöönsä, omiin joukkoihin ja sijoittajiin on ensiarvoisen tärkeää. Kaikki nämä tahot odottavat kuulevansa itselleen sopivan sanoman. Varmasti mahdottomia hankkeitahan ei kannata tukea, vaikka joskus niiden liepeillä voi syntyä uutta tietoa ja raikkaita avauksia. Jos nyky-Suomessa haluaa saada isoja asioita liikkeelle, tulee saada useita tahoja vakuuttuneiksi. Valtion niukkoja keksintöjä edistäviä rahoja jaettaessa on käyttöön otettu innovaatiokomiteoita, jotka tietävät mitkä seuraavat suuret läpimurrot ovat ja mistä ne tulevat. Samalla komiteat tulevat epäsuoraan kertoneeksi, mitkä ideat varmasti lyövät läpi.

Tasaisen tappavalla tahdilla etenevän kehityksen ennustaminen ja tukeminen on helpompaa kuin uusien ja epävarmojen ideoiden. Kuitenkin merkittävät isot harppaukset otetaan usein uudenlaisten avausten ja lähestymistapojen kautta. Uuden keksijälle kysymys on lopulta jääräpäisyydestä, riskistä ja tuesta tai sen puutteesta. Komiteat saavat vastaansa loistavia uusia ideoita, joita on hankala erottaa mahdottomista höyrypäisistä keksinnöistä tai muuten pelkästään vakuuttavan esityksen tarjoavista. Joskus asiat vain keksitään liian aikaisin tai väärässä paikassa. Historia ei aina löydä ja korjaa menetettyjä kultahippuja. Ei ole olemassa yhtä oikeaa totuutta ja absoluuttista reiluutta.

Hyvinä esimerkkeinä käyvät Alfred Wegenerin mannerlaattateoria, Robert Goddardin rakettiteoriat ja -kokeilut sekä Petr Ufimtsevin häiveyhtälöiden mielenkiintoinen onnistuminen. Kaikki ovat olleet menestyksiä, mutta eivät omassa ajassaan eivätkä keksijöille itselleen. Ufimtsev sai julkaista tuloksensa 1960-luvun Neuvostoliitossa, koska ne oli arvioitu hyödyttömiksi ja jopa haittaavan hänen urakehitystään. Lockheedin insinööri Denys Overholser sai käsiinsä venäjästä englanniksi käännetyn teoksen ja ymmärsi asian merkityksen, jos yhtälöt pitivät paikkansa. Koska Overholser työskenteli Lockheedin Skunk Works -yksikössä, hänellä oli mahdollisuus viedä asiaa eteenpäin kolleegojensa kanssa. Lopputuloksena oli aivan uudenlainen lentokone, joka on tutkalle käytännössä näkymätön. Meni yli kymmenen vuotta ennen kuin venäläiset saivat tietää, mitä kilpakumppanit olivat tehneet ja mihin se pohjautui. Normaalisti toimivassa isossa yrityksessä vastaava uuden asian tekeminen olisi ollut haastavaa tai kenties mahdotonta. Skunk Works pyrkii tekemään mahdottomuuksien rajalla olevista ideoista totta, joten tällä kertaa palaset loksahtivat kohdalleen.

Jos joku asia voidaan ennustaa, se on tunnettu. Jos rahoitetaan vain merkittäviä tulevaisuuden ideoita, ne on oltava etukäteen tunnettuja. Siitä huolimatta niihin kohdistuu taloudellinen riski. Rahoittajien tavoitellessa nopeaa tuottoa, on helpompaa kieltää epävarmat ja oudot asiat. Riskisijoittajiakin on moneen junaan. Sama pätee myös ison mittakaavan hankkeisiin. Resurssien rajallisuus on aina ongelma, mutta siitä huolimatta ihmiskunta on rakentanut pyramideja, linnoja, pilvenpiirtäjiä ja muita huimia panostuksia vaatineita kohteita. Joskus halu ja tarve ajaa resurssilaskelmien edelle. Onnistuneista tapauksista kirjoitetaan oppikirjoja, joiden ideoita monistamalla pyritään luomaan seuraavia nokioita ja muita menestystarinoita. Tuohon yhtälöön sisältyy samalla pysähtyneisyyttä ja omia sisäisiä riskejään.

Vastaava epävarmuus rasittaa myös teknisesti mahdollisia, mutta taloudellisesti tai organisationaalisesti haastavia keksintöjä. Kirjassaan “The Trouble with Computers” Thomas Landauer nimeää “welfare benefitin”, jota termiä ekonomistit kuulemma käyttävät. Käännän tässä sen hyvinvointieduksi, tuntematta sen taustalla olevaa taloustieteen terminologiaa. Hyvinvointietu tarkoittaa investointeja (ja ideoita), jotka hyödyttävät yhteiskuntaa ja ihmisiä, mutta eivät välttämättä itse yritystä taloudellisesti. Yrityksen kannalta laskettuna panos ei vastaa tuottoa. Yltiöhumanistin silmiin väite voi vaikuttaa nurinkuriselta – esimerksiksi ihmisiä ei kannata pelastaa, jos se tulee liian kalliiksi. Onko teknologia ihmistä varten vai päinvastoin? Ja eikö rahakin lopulta ole vain merkittävä innovaatio ja teknologiaa? Ottamatta kantaa miten ihmiskunnan tulisi toimia ja järjestää asiansa, väitteeseen sisältyy myös toisenlainen haaste ja ongelma.

Uudet, erilaiset ideat sekä ihmiskuntaa palvelevat ratkaisut eivät saa tukea ja rahoitusta käytettävissä olevien mekanismien kautta. “Idea on loistava, tälläinen pitäisi saada, mutta me emme voi valitettavasti tukea sen kehittämistä”. Julkaisussaan “Informaatio- ja kommunikaatioteknologian (ICT) liiketoimintamahdollisuudet kriisinhallinnassa” Immonen ja Rantanen osoittavat ongelman olemassaolon myös kriisinhallinnassa. Teknisiä mahdollisuuksia ja mielenkiintoa on, mutta rahoitusta ei voi saada tällaisille “tuottamattomille” ideoille. Miten iso yritys voi laskea tuottoa per säästetty ihmishenki tai kärsimys, jos sitä ei makseta tilikauden loppuun mennessä? Ainoa asiakas on maksava asiakas.

Yksittäisen pelastuslaitoksen näkökulmasta asia on yksinkertainen. Jos jokapäiväisessä työssä tarvitaan letkuja ja lapioita, niitä on ostettava ja varat käytetään niihin. Jos yhteiskunta yhteisesti päätää, että palovaroittimet vaaditaan jokaiseen asuntoon (ja paristot vaihdettavaksi), ehkä letkuja ja lapioita tarvitaan vähemmän. Hyödyt ja kustannukset on kuitenkin helpompi laskea palasittain kustannusyksiköittäin, kuin miettiä millä tavalla asunnossa korkealle kohonnut lämpö ilmoitetaan pelastuslaitokselle ennen palon syttymistä ja vältetään koko onnettomuus. Tämä vaatii muutakin ohjausta kuin innovaatiolautakuntaa, joka tietää etukäteen mikä on kaupallisesti merkittävää toimintaa.

Eikö asialle voi tehdä mitään? Voisiko olla vaihtoehtoisia malleja yleishyödyllisten ja uusien ideoiden vauhdittamiseksi? Valtion budjetti on rajallinen ja keräysten järjestäminen jokaista hyvää asiaa varten on hankalaa ja lopulta kestämätöntä. Esitän kuitenkin mallin, joka avaisi kanavan Keksintösäätiön ja vastaavien tahojen tueksi. Enkä ehdota nyt verojen korottamista. Hieman kieroon ajateltuna tämä raha ei ole keneltäkään pois, kun se tiedetään jo etukäteen.

Ehdotan, että esimerkiksi jokaisesta yli miljoonan euron lotto/veikkausvoitosta otetaan kymmenen prosenttia ja laitetaan se innovaatioarvontaan.

Innovaatioarvontaan osallistuvat potentiaalisiksi listatut ja varmistetut ideat ja yritykset, joilla on mullistavia ajatuksia. Satunnaisesti joku näistä keksijöistä saa esimerkiksi 100 000 euroa juuri tuon idean edistämiseen ilman takaisinmaksuvelvoitetta. Parhaassa tapauksessa useampi kymmenen ideaa tai yritystä saa vuosittain mahdollisuuden kokeilla “mahdottoman” ideansa kantavuutta. Keksintösäätiöllä on jo nyt tiedossa keksijöitä, joille kannattaisi antaa rahoitusta, mutta nykymekanismeilla eivät pysty sitä tekemään. Ehdottamani malli toimii samantyyppisellä ideologialla kuin MacArthur-palkinto, jossa säätiö rahoittaa poikkeuksellisia lahjakkuuksia, jotta he voivat vapaasti kehittää ja käyttää omaa osaamistaan. Tällä hetkellä summa on 500 000 USD, joka maksetaan viiden vuoden aikana vuosineljänneksittäin.

Suomessakin olisi hienoa, jos Veikkaukselta ja Raha-automaattiyhdistykseltä saatavia varoja voitaisiin suoraan käyttää tulevaisuuden innovaatioiden tukemiseen. 500 000 euroa ja maksimissaan 5 vuotta vuosittain tarkasteltuna olisi erinomaista, mutta pienempikin summa olisi loistava päänavaus uusien isojen innovaatioiden synnyttämiseksi.

Jos kärjistäen lottovoitto on todennäköisempi kuin “loistavaa, mutta” -ideoiden tukeminen, miksi ei ottaa lottovoittoja käyttöön. Komitean ei tarvitse tehdä viisivuotisinnovaatiosuunnitelmaa. Sen tekevät kaikki, joilla on hyvä idea ja joku voittaa aina.