Troglodyte: Cleantech 2

“As inventors ourselves, we think this was already trivial somewhere around the year 1900 (the invention of radio).”

The purpose of Project Troglodyte is to hunt for bad patents and to show what went wrong. For more information, please see the web page.

SYSTEMS AND METHODS FOR REMOTE IRRIGATION CONTROL

[Writers: Jakke Mäkelä and Niko Porjo]

On June 5, 2012, a patent was granted (US8193930) named  “Systems and methods for remote irrigation control”.  The patent holder can now claim to own the following invention: someone has a rain sensor standing in a field; that rain sensor sends rain data to someone over a wireless network; and that information is used to control water sprinklers.

If we were to summarize our understanding of the patent, we would say it consists of saying in a complex way: “Remove the wire and insert equipment to make a wireless connection”. As inventors ourselves, we think this was already trivial somewhere around the year 1900 (the invention of radio). In the Appendix, we try to show this in much more detail.

We take a clinically analytical perspective here. We might not personally like this patent, and we see potential risks in it, but it is entirely up to the patent owner what happens with it. As we pointed out in The Trolling Triad, not everything is a patent troll that is called a patent troll.

Disclaimer: we are NOT talking about legal issues. In the patent world, it is the claims that are argued about in court. We are interested in the technical descriptions, that is, the new information that society gained by granting the patent. After all, that is the whole tradeoff behind the patent system; in exchange for a temporary monopoly to the patent holder, society gets full disclosure of what was invented.

We see nothing new here, hence no benefit to society.

The main risk we see with this patent is the precedent. In the wrong hands, this patent is broad enough to cause problems to anyone dependent on irrigation.  The main group at risk are small US companies who design or manufacture systems for irrigation control. A Google search with “irrigation control company” quickly brings up such a list.

This patent is spurious enough that it really is difficult to work around.  There are two ways to achieve such a blanket: by being very good, or by being very vague.  The patent certainly does not fall into the category of “very good”.

The deadening effect of spurious patents on the software industry is well known (see EFF). If such practices start to flow into industries that deal with crucial services, such as irrigation or food production, it is a bad precedent.  Innovation in this area will slow, and prices will rise due to the additional licensing costs. This can have a high societal impact in the long run.

 

 

TECHNICAL APPENDIX: IN-DEPTH ANALYSIS OF THE DESCRIPTION

The patent description is written around the figures and the dissection below follows this partition and may thus handle several paragraphs in one go. There is a short plain text summary of the patent text related to each figure, given in italics and followed by our comment. Each figure and its description will be analyzed and it will be shown that the description of the invention offers nothing new, in fact in terms of technology most of the content is positively ancient. It should be noted that many of the examples given as prior art fit more than one part of the description.
The technical field is described as follows “…remotely operated systems, and more particularly to a computerized system for monitoring, reporting on, and controlling remote systems by transferring information signals through a wide area network (WAN) and using software applications hosted on a connected server to appropriately process the information.”
Fig 1. Describes shortcomings of prior systems, the main message is that  wires are required to connect sensor actuators to controllers and further to more remote computers or humans running decision making algorithms and finally to power sources. —–   For example this Skylab Saturn IB Flight Manual describes how a range safety officer could use a wireless connection to trigger destruction of the vehicle based on part on telemetry readings received from the vehicle. Tracking stations forming a wireless network around the world were used to send and receive telemetry data.  —–  Radioisotope thermoelectric generators have been used to power both lighthouses and monitoring equipment on earth. In a less extreme example mobile phones have always been battery powered and since they include a microphone (sensor) and an actuator  (vibrating alert) they can be called a sensor actuator. Thus the problem of wired connections for data and power for remote units has been solved a long time ago by using wireless radio technologies.
Fig 2. According to the text fairly complex network can be constructed with wireless transceivers connecting the sensor actuators through local controllers to a network. Specific software can be run on different nodes, connections can be one way, wireless communications can be established through several nodes if they are in range and data can be gathered by and commands can be sent from computers on the network.  —–  Two abbreviations: GSM and SMS. A GSM network consists of back end infrastructure (computers, wires…) connected to base stations through either wired or in some cases wireless two way data network. Mobile devices are connected to the base stations by a radio frequency link. While in a digital system all information is transferred as digital data, the Short Message System offers an example where the originating data is something else than audio.   —–    Handheld radio transceivers or walkie-talkies have been around since at least WWII, the technical task of integrating one of these with a mobile phone and others with sensors to create a sub network of sensors is straightforward.  —– As mentioned in the description each node of a network can and usually does host application specific software, for example mobile devices with the “Nokia OS” have been sold in their billions.
Fig 3A. Describes for example a subset of functions of a mobile phone.  —– But very superficially.
Fig 3B. Describes for example a more restricted subset of functions of a mobile phone and mentions the emergency call function. —– But very superficially.
Fig 3C. Compared to 3A and 3B an actuator is added.  —– Using a radio transmitter such as a mobile phone or a walkie talkie to control an actuator is a trivial exercise and has been around since the 1960s in the form of RC toys.
Fig 3D. Describes how predetermined codes are coupled with sensor outputs and transmitted to appropriate network nodes.  —– This is a simplified example where a lookup table has only four alternate states. A vocoder offers the same function, information from the sensor (microphone) is coded to relatively few states that then sent over the network.
Fig 3E. Adds a GPS receiver.  —– Mobile phones have included GPS receivers since about 1999 but as will be discussed below aircraft altitude information has been transmitted in wireless networks long before that, replacing the altitude information source with a 3D location source is not inventive.
Fig 4. Describes a generic data processing unit with data connectivity and ability to take actions based on the data it receives. —– It is very generic and could for example represent a computer in a mobile base station.
Fig 5. Similarly to Fig 4 a very generic description of a Wide Area Network is given and it is mentioned that one of the local controllers can be attached to a WAN.  —–  A mobile base station might have a WAN connection and in many cases has a wired connection either over an IP network or for example a telephone network.
Fig 6. Is an application of some of the preceding ideas to a “utility meter monitoring system”.  —– It fails to include the idea of being able to cut the supply in case the bills are not paid. As general technologies for creating exactly this type of networks have been shown above to have existed for a long time this application is not new.
Fig 7. Is an application of the preceding description to automotive fault code transmission. A car with On Board Diagnostics connected to a transceiver for communication.  —– This is again a variation of telemetry. In Formula One these systems apparently surfaced in the early 1990s. As an example 2-way telemetry is mentioned casually in this June 1993 issue of Popular Mechanics. Data transmission from a pit computer through a telephone network using a modem would have been a trivial exercise.
Fig 8. Is an application of the preceding description to an irrigation system. —– It’s a wirelessly transmitting weather station and a remote controlled actuator in the same box while the decision algorithm runs on a remote computer.
Fig 9. As Fig 8 but applied to a parking facility. —– It’s a parking facility with wires replaced by wireless connections.
Fig 10. Introduces a system that monitors and controls all of the applications of Figs 7 through 9, instead of a dedicated monitor / controller for each system. It also says that some of the hardware of co located applications may be shared. —– A network server may be in connection with several mobile phones each connected to a different computer through a BT connection acting as a modem, each of those computers may in turn be controlling a  Mars rover through the Deep Space Network while simultaneously communicating with a different server running World of Warcraft.  ———   On a more serious note, a system or computer receiving interrogation information from several air traffic control radars is monitoring several networks of transponders simultaneously. The basic technology has been around since WWII as can be seen for example from this 1965 issue of Popular Science; for obvious reasons it is wireless. Further as several radars can see the same transponders, several monitoring systems can receive information from the same radars (i.e. civil and military controllers) and the radars can belong to different networks (i.e. be part of networks in different countries) equipment reuse on several levels has also been around for some time.
Fig 11. Describes a message data structure with error indication. —–  See this document for a short description of how morse code messages are formatted. This book gives more general data structures for communication. A short introduction to error correction can be seen here.
Fig 12. Shows several examples of the message structure and explains how the devices can be pinged to check their and the networks health.  —–  Ping has been around since 1983. Almost any digital network requires a message structure to be able to route messages to correct destinations (IP).
Fig 13. Describes a data translator that converts signals in a legacy system to function codes. These codes can then be transmitted through transceiver(s) until they reach a WAN.  —– This is the same as attaching a wireless telemetry module to an existing wired network.
Fig 14. Describes how one of the sensor actuators having a transceiver may be integrated to a ship, plane, car etc. And how this unit can then be used to collect information.  —– Again the reader is encouraged to see Skylab Saturn IB Flight Manual for a description of how telemetry is used in rocketry. For a more recent system see patent 5,890,079.
 

Energiajäte ja hyötyjäte: Ei energiahyötykäyttöön

“Tämäntyyppisiä innovaatioita Suomi tarvitsisi, ei pelkästään erilaisia Pierevät Kotkat -pelejä.”


Joskus yksi kuva tiivistää kokonaisen ongelmakentän.

(Kuva: Sami Jumppanen)

Helppo tuolle on nauraa, mutta innovaattori miettii seuraavaa askelta jo samalla kun hihittelee. Tämä osoittaa todellisen ongelman, joka vaatii todellisen ratkaisun. Kierrätys on aivan liian hankalaa ja sekavaa.

Olisiko tässä paikka softa-startupille? Kierrätyksessä on toivottoman usein tilanteita joissa on täysin mahdoton tietää mikä on oikea paikka tietylle roskalle. Termit vaihtelevat paikkakunnasta ja jäteyhtiöstä riippuen (kaatopaikkajäte voi olla kaatopaikkajätettä, tai sitten vaikka polttokelvotonta jätettä, tai sekajätettä). Rakkaalla lapsella on aivan liian monta nimeä.

Ja vaikka termi olisi selvä, aina löytyy välitilanteita joista ei kerta kaikkiaan tiedä. Mihin esimerkiksi kuuluvat CD-levyt?* (Vastaus kirjoituksen lopussa).

Kuinka vaikeaa olisi tehdä käyttäjille ilmainen palvelu, jossa
a) älypuhelimella napataan kuva roskasta ja
b) lähetetään (mahdollisesti paikannustietojen kera) kuva palveluntarjoajalle, joka
c) lähettää vastauksena viestin, jossa kerrotaan mihin roska kuuluu juuri sillä paikkakunnalla?

Voin sanoa suoralta kädeltä että helppoa se ei ole. Mutta ei myöskään mitään scifiä. Mitään päivystävää tunnistajaa ei tällaiseen palveluun varmastikaan ole varaa tai järkeä palkata, vaan homma on hoidettava lähtökohtaisesti automaattisesti. (Toki erikoistapauksia varten voi olla ihminenkin arvioimassa). Automaattinen kuvantunnistus ei vielä ehkä aivan tarpeeksi hyvin toimi, mutta se edistyy koko ajan.  Eikä start-uppien ole tarkoituskaan helppoja asioita tehdä.

Systeemistä saadaan melko robustikin: jos roskaa ei tunnisteta, softan kannattaa arvioida se siihen jäteluokkaan, johon sen joutuminen tuottaa vähiten ongelmia. Käytännössä turvallisinta on (yleensä) luokitella se kaatopaikkajätteeksi, mutta silloinkin pitää tietää mitä se tarkoittaa paikallisella murteella (Helsingissä se on sekajätettä, Turussa polttokelvotonta jätettä).

Jos järjestelmä saataisiin kertaalleen toimimaan, esimerkiksi Jätehuoltoyhdistyksellä (paikallisten jätelaitosten kattojärjestö) voisi hyvinkin olla intressiä rahoittaa päivittäistä toimintaa (varsinaiset toimintakuluthan ovat pienet). Heidän intresseissään on saada mahdollisimman hyvälaatuista jätettä, oikea materiaali oikeassa pöntössä.

Tuotekehitystä tämä vaatisi, mutta sitä varten täytyy maasta löytyä rahaa. Tämäntyyppisiä innovaatioita Suomi tarvitsisi, ei pelkästään erilaisia Pierevät Kotkat -pelejä.

*) Vastaus: Turussa CD-levy on polttokelpoista jätettä. Helsingissä CD-levy on 1.1.2012 alkaen sekajätettä (joka menee kaatopaikalle), mutta oli ennen sitä energiajätettä (mikä tarkoittaa suunnilleen samaa kuin Turussa polttokelpoinen jäte). Muilla paikkakunnilla käytännöt voivat vaihdella.

Edit: Kirjoituksen kakkososa: Energiajäte ja hyötyjäte: Kuka mitä häh?

Jätteisiin liittyviä muita kirjoituksia: Jätteet

Troglodyte: The trolling triad

“So is Sipco a patent troll? I follow the old adage: ‘If it quacks like a duck and walks like a duck, it probably is a duck.’ Sipco even smells like a duck. You decide.”

The purpose of Project Troglodyte is to hunt for bad patents and to show what went wrong. For more information, please see the web page.

SIPCO LLC

What makes a patent troll truly venomous? In a previous posting I analyzed a spurious patent owned by Sipco LLC. I will now analyze Sipco itself. I use Sipco as a concrete example because it sticks out so nicely. It is also involved in technology areas with a high human and environmental impact. That worries me (see Trolling on the human rights;  The kiss of death of IPR;  Another viewHumanitarian Patent Pool).

The Wikipedia article on patent trolls has a  perfect definition: “Patent troll is a pejorative term used for a person or company who enforces patents against one or more alleged infringers in a manner considered aggressive or opportunistic with no intention to manufacture or market the patented invention.”

The difficult part is the term “considered”.  Bad press by itself means nothing. In my decade of IPR experience I have really learned only one useful thing: trust no one. The press could be wrong, or biased, or even bought off. And blogs… forget it.

Sipco certainly has gotten very bad press. See SmartGridToday,  Green Patent BlogCleanTech Blog. There’s no doubt that Sipco is litigating aggressively, and doing it proudly and openly (The SmartGridToday article in particular is fascinating, as it describes the company owner’s worldviews in his own words). But that’s not good enough. I believe it’s crucial to be as coldly objective as possible.

The trolling triad

I believe that there are three characteristics that a company needs to have to be considered a truly dangerous troll. The company has a provable history of aggressive litigation; the company doesn’t actually produce anything itself; and the company’s patent portfolio consists of spurious and overly vague patents.  I call this the “trolling triad”.

Two out of three can make a company a nuisance, but I believe that all three are needed  for a company to become the equivalent of a loose cannon.

Flag 1: Aggressive litigation

If a company is heavily involved in litigation, it may be a red flag.  It is not automatic proof of anything. If someone genuinely invests money and time into development, and then finds that someone else is making huge profits on the invention having copied it, the inventor does have a case (legal, and perhaps even moral) for suing the copycat. It’s necessary to look at the context.

(Personal sidenote: I can actually empathize with inventors who go berserk when their ideas are stolen, and go on a litigation rampage. If an inventor spends years of his life working on something, it gets personal.  If he further sacrifices his money, friends, health, and family for the invention, it gets deeply personal).

Sipco’s case is quite clear though. The references above make it amply clear that Sipco is in the business of aggressive litigation, and is proud to be so. Sipco’s own press release in PRNewswire also shows that its main business is licensing. One red flag.

Flag 2: Lack of own production

From Wikipedia again: “The non-manufacturing status of a patent troll has a strategic advantage, in that the target infringer cannot counter-sue for infringement.” When two companies both actually produce something, there is a balance of terror. If one sues the other and tries to halt production, the other can sue back and try to halt production. Many of the highest-profile patent litigation cases, for example in the telecommunications industry, are of this type.

I will now say something that may come back to haunt me: I feel that when two equally big players fight each other, society really doesn’t suffer. If one of the players loses, then the other one will just keep manufacturing and developing the products that were argued about.  For us in the audience, it really is mostly just a game.

However, if one of the participants is actually producing nothing, it can turn deadly serious. The non-practicing entity (NPE), to use the polite term for a troll, cannot be countersued. If the NPE wins, at minimum the cost of the product will rise due to the extra licensing costs. At worst, the NPE can actually prevent the product from even being produced, and can certainly drop further development dead in its tracks.

However much I search, I can’t find anything that Sipco would actually have produced. Absence of evidence is not evidence of absence, and if I run into some actual Sipco product, I will consider retracting the flag. But for now: second flag, bright red.

Flag 3: The patent portfolio

The truly lethal trolls are ones that have overly broad and vague patents in their arsenal. As long as the patents are specific enough, only a limited number of companies can be attacked. But if the patents are too spurious and vague, almost anyone can be attacked on almost any grounds.

(See the EFF’s Patent Busting site for examples. My personal favorite is the patent on taking and scoring educational tests online. It takes real chutzpah to demand royalties on something like that).

Trying to evaluate the “quality” of a patent is difficult and subjective, but I have so far analyzed Sipco’s patent US7739378 on pollution monitoring. I considered it essentially spurious, and it should not have been granted. So far, I’m not aware of litigation over that patent though.  GreenTechGrid discusses several other Sipco patents in the smart grid technology area, which Sipco is in fact litigating on.  Based on a quick look, I am highly skeptical whether those patents have much merit, but I need to analyze them more closely. Somewhat tentatively, a third red flag.

So is Sipco a patent troll? I follow the old adage: “If it quacks like a duck and walks like a duck, it probably is a duck.” Sipco even smells like a duck. You decide.

 

Troglodyte: Driverless vehicles 3

“They call it a landing strip. In my mind this is the same as having a sign over the road telling you where you are.”

The purpose of Project Troglodyte is to hunt for bad patents and to show what went wrong. For more information, see the  web page.

 

Transitioning a mixed-mode vehicle to autonomous mode

I recently run into this article. I browsed through the patent, here are a few comments. Note: this analysis was originally done before we developed the analysis template so the approach differs a little from the rest.

Figure 1.

 

TIER 1: SUMMARY

This patent seems to describe a way of reading a reference indicator (e.g. a marking in the road) and using this info to both determine the exact location of the car and to retrieve data that the indicator points to. Basically there would be a QR code in the road at some location, which is possibly a place where the vehicle stops. They call it a landing strip. In my mind this is the same as having a sign over the road telling you where you are. What about snow and ice? It is difficult to read the QR code if it is under snow. This may have been overlooked as all the inventors seem to be from California, maybe Mountain View, and according to wikipedia snow isn’t really a big problem there. But to be fair, they do indicate that using RF technologies could be used to implement the same functionality. It can, but getting the same location accuracy would be more challenging.

Is there any harm in this patent being granted? There might be if they manage to push through the idea that a computer reading road signs and taking actions based on that is now a google monopoly. It might be difficult for Google or anyone else to push through such a wide interpretation of this patent but who has the money to challenge them?

While the ideas are somewhat useful they are not that innovative. There can be several reasons for this, one is that the best parts of the application needed to be dropped during the examination (due to prior art) by the patent office but they decided to go through with it anyway. A more cynical view might be that just before the filing date someone decided that the driverless car thing might go forward and we need to patent something stat. To be complete it is worth mentioning that I may just have fallen for the trap that I have seen many times before: things are much more obvious after someone has written them down.

 

TIER 2: AVOIDING LICENSING

As usual the description includes a lot of stuff that is already known or otherwise obvious, for example about a page is used to describe the computer system that might be running the logic needed to use the indicators. I’m not very skilled in the art of autonomous vehicles but my feeling is that the description didn’t really include anything that the public would benefit from. This is mainly because reading a QR code or other indicator is exactly analogous to what one does when reading a sign with location information. Adding the use of an url to retrieve instructions doesn’t really make a difference in the inventiveness department. I’m left wondering what was the original idea that they invented and at what point was it removed from the patent? Also, the title and the description don’t really match. While this is nine kinds of bad when writing a school assignment it might be good for a patent (if you are the inventor) as it is more difficult for the competitors to find the information.

This patent might not be that difficult to bypass. In the short term just record the orientation and location of many road signs and use the vehicle’s approximate location from GPS or sensors to check which sign it is and then retrieve this info from a database.

 

TIER 3: TECHNICAL ANALYSIS

If the QR code (indicator) includes position and orientation (of the indicator) a camera can be used to get a very accurate position, “easily” with in millimeters related to the indicator. This could be useful in a few situations:

  • There is no GPS coverage
  • The GPS location accuracy is not enough to resolve the location ambiguity due to say roads being on top of each other. This can usually be deduced from the path history, but it is good to have some redundancy, if there is reboot or something.
  • On a bridge, tunnel or similar location a Lidar or radar may not have enough information as the environment is completely built or “empty”
  • The environment has been changed beyond recognition due to construction etc. I have understood that the google approach uses prior knowledge of the environment to determine the location by comparing sensor info to database. It might be that if the road has been closed for changes that the environment, not to mention road location has changed drastically. In such a case the QR code could have info on how to cross the changed part of the road until the database has been updated by the passing vehicles.

It looks like these ideas predate the lidar approach but this has been filed on May, 2011 (now is 27 July, 2012) and as long as I know google’s lidar tech using Prius is older than that. So they may have been thinking about one of the bullets above where it would be quite handy say if there is a construction in a tunnel and vehicles need to be told what to do. It is worth noting that inertial sensors can be used for fairly accurate guidance for a short while and even dead reckoning is likely good enough to avoid a couple of cones and a steamroller if it is in a designated area. Doesn’t have much to do with transitioning to autonomous mode though.

After reading the claims I have two things in my mind:

  1. I can recognize the description from the claims, which is nice and not always the case
  2. If they manage to get another patent where they define wetware to be a computer I will need to start paying licensing fees every time I drive a car.

Troglodyte: CleanTech 1

“This is really no different from saying ‘If my invention sees a problem, it solves it'”

The purpose of Project Troglodyte (ended in 2013) is to hunt for bad patents and to show what went wrong. 

TRANSMITTING POLLUTION INFORMATION OVER AN INTEGRATED NETWORK 

I’m starting my part of  Project Troglodyte with something that might be unwise if I lived in the USA: I will dissect a patent which I think has value for just one purpose: trolling (see EFF article for more on patent trolls). I’m not saying anything that would cause legal problems, but it’s still good to have an ocean between me and the patent.

The patent is in the area of cleantech, and in particular pollution monitoring, which is a subject close to my heart.  The case is particularly interesting because there are two connected patents: US7424527 (filed 2001, granted 2008) and its continuation US 7,739,378 (filed 2008, granted 2010).  Differences in the two show how the patent system has changed in the last decade, and not for the better.

The patents are owned by Sipco LLC. Is Sipco a patent troll? I prefer not to commit myself at this point, but will let the reader decide himself, based on several articles (SmartGridToday,  Green Patent Blog, CleanTech Blog). I have put Sipco on my list of companies to follow, but for this article I will only stick to these patents.

Figure 1: Schematic from the patent application

SECTION 1: SUMMARY

The 2008 patent basically claims the following invention: there are “pollution sensors” (whatever that means) that are connected by a wireless network to a monitoring site. When the pollution level gets too high, the sensors send a warning to the monitoring site. As far as I can determine, that’s basically it.

So what is the inventive step that makes the 2008 unique and worthy of a patent?

I don’t see one. It is difficult to be diplomatic about this particular patent: it has no real value, except for trolling purposes. (I also suspect the patent-filing system has been gamed; see Section 3 below for details). In the worst-case scenario, anyone sending pollution information via a wireless network may now need to pay Sipco royalties.

The original 2001 patent at least had a somewhat concrete application area: in principle, it was directly applicable to monitoring of pollution from industrial facilities, and helping operators make decisions when something unexpected happens. Even so, the “invention” was completely trivial even in 2001. It is somewhat astonishing that the patent was granted; in Section 3 I speculate on why this may have happened (though it is speculation only).

The 2008 patent, by contrast, is sort of applicable to the monitoring of some kind of pollution from something in order to perhaps do something. A pollution monitoring management controller is mentioned in Claim 13, but since it is a dependent claim, it can be dropped without really affecting the patent. The main claims are completely abstract.

But overall it is difficult to see much non-trolling value in the 2001 either. Just one example of its vagueness: on page 17, the patent describes what happens if one of the network elements stops working. “In such a situation, upon the detection of the failed transceiver or transceiver component, the pollution monitoring management controller 302 (Fig 3) redefines communication paths out to the transceivers, and transmits the redefined paths out to the transceivers, transceiver stations, transceiver units and site controllers such that the paths are redefined”. This is also the thing that is claimed in Claim 12. That’s all the information we’re given.

This is really no different from saying “If my invention sees a problem, it solves it”. One reason for the whole existence of the patent system is that it makes innovations public; the inventor has a monopoly on the use of his technology, but society has been given detailed information on how to build the invention. In this case, society has gotten zilch. Zilch on how to to build a robust system as claimed in Claim 12, and I’m afraid zilch on how to build anything in any of the other claims. And in the case of the 2008 patent, it’s somewhat vague what the “something” is that has been claimed to have been invented.

In fact, the benefit for society is less than zilch: it is negative. Now that the patents have been granted, the owner can (completely legally) use them to block any real progress in this area. If someone actually invests money and R&D into actually building a network like this, they will face the risk of litigation from the patent owner. And that risk will exist for the next 20 years, while the patents are valid. (In practice, the owner almost certainly has filed new continuation applications already, so the risk will continue infinitely).

This is unfortunately not paranoid speculation; as the articles show, this particular patent holder has shown no hesitation to sue. Cleantech companies can more or less expect future litigation from this direction.

SECTION 2: DAMAGE CONTROL

The damage has been done and the patents have been granted.  The best damage control, of course, would be for someone to try to invalidate the patents on the basis that there existed prior art in 2001 which made the patents trivial. However,  that is a cripplingly difficult and expensive process (see the EFF’s Patent Busting site).

Realistically, the only thing that could really be done is to design workarounds. These are extremely difficult due to the general nature of the patents. However, there may be a few weak points in the patents. It might be possible to find more if this were done professionally, but a volunteer project can only go so far.

Claim 1 (of both patents) requires that a message be generated “if a pollution level exceeding a predetermined threshold is detected”. In principle, if the detectors are polled at regular (or random) intervals, they would not infringe this patent. Thus this patent might have no effect on systems that monitor continuously. However, if the purpose is to warn of sudden rises in pollution, this is a problem.

One other workaround might be to use changing thresholds; several threshold values are stored in a central computer, and the pollution sensors get updated threshold values every now and then. (Note that this makes no practical sense whatsoever. But if the alternative is to spend years in litigation, it might be the less insane solution).

Claim 13 refers to a “pollution monitoring management controller”. Such a centralized controller is also evident in all the Figures. If the information management is completely distributed, so that there is no central controller facility, then the patent should be severely weakened. However, litigation is still probably possible.

[Addendum 13.8.2012 1405 UTC: A reader pointed to another way to circumvent this. Since the term “pollution” is not actually defined in the patent, one might work around the patent by steadfastly claiming that the sensors are not “pollution sensors”. Rather, they could for example simply be called “gas sensors” or just “detectors for determining the composition of the air”. Insane? Yes, but it might work. Please keep these ideas coming!] 

SECTION 3: TECHNICAL ANALYSIS: SYSTEM GAMING?

There is something interesting about the 2001 patent, which looks like a boring technical detail but may reveal a lot. On any patent document’s first page, there is a section called “References cited” which lists patents that are related to the subject area (either found by the inventor, or by the patent examiner). They are, in effect, proof that the inventor knows what other people have invented, but has invented something different. Typically there will be  20-30 such references.

On the 2001 patent, there are more than four pages of references, double columns, small text. More than 500 references. I don’t recall seeing anything like this. I am not even sure what it exactly means. Most of the references seem to have been made by the drafting patent attorney, with only a few added by the examiner.

I have no idea what actually happened during this seven-year-long patent process, but I will try to imagine a scenario.  Patent examiners work under serious time pressure (see for example Wolinsky 2010). I have heard a rumor that examiners have only two hours to process an application, but haven’t been able to find reliable references. Two hours is almost nothing, and if true, it really makes the system a lottery.

If I wanted to get a spurious patent through, I might submit an application with 500 references, without specifying at all how the references actually relate to the patent. That makes it look as if I have done serious research before filing, and makes it difficult for the examiner to reject it outright. There is no realistic way for the examiner to go through even a small part of the references, yet he has to make a judgment. It is basically spamming the examiner.

The 2008 patent has less than 100 cited references, but nine of these refer to USPTO decisions made in 2009 on other patents. I don’t have the competence to even speculate what exactly has been going on behind the scenes, but obviously something has.

The time from filing to granting of the 2008 patent was less than two years, which is very short (in comparison, it took seven years for the 2001 patent). Perhaps the process was speeded up by the fact that the 2008 patent is a continuation of the 2001 patent. Hence a lighter prior art examination was considered adequate. If so, this also points to a weakness in the system: once a spurious patent has been granted, it is easier to churn out new spurious patents based on the first one.

I wish I had less reason to feel cynical about this, but I don’t. Patents like this make me feel that my Trolling on the human rights essay is not dystopian at all. It is simply a description of our future.

 

Translate »